PHYS 621 - HOMEWORK \# 6 - DUE FRIDAY, 10/09/2009

Problem 1. Show that the Green function for a flat two dimensional circular wedge of angle β and radius a is

$$
G\left(\rho, \rho^{\prime}, \varphi, \varphi^{\prime}\right)=\sum_{n=1}^{\infty} \frac{4}{n} \rho_{-}^{n \pi / \beta}\left[\rho_{+}^{-n \pi / \beta}-\left(\frac{\rho_{+}}{a^{2}}\right)^{n \pi / \beta}\right] \sin (n \pi \varphi / \beta) \sin \left(n \pi \varphi^{\prime} / \beta\right)
$$

where ρ and φ are the two-dimensional polar coordinates, and $\rho_{-}=\operatorname{Min}\left(\rho, \rho^{\prime}\right), \rho_{+}=$ $\operatorname{Max}\left(\rho, \rho^{\prime}\right)$.

Problem 2. A flat conducting ring of infinitesimal thickness, internal radius a, and external radius b is uniformly charged with total charge Q.
(a) Write the three-dimensional charge distribution density in cylindrical coordinates;
(b) Find the potential outside the ring.

Problem 3. Jackson problem 3.7.

