PHYS 621 – HOMEWORK # 6 – DUE FRIDAY, 10/09/2009

Problem 1. Show that the Green function for a flat two dimensional circular wedge of angle β and radius *a* is

$$G(\rho, \rho', \varphi, \varphi') = \sum_{n=1}^{\infty} \frac{4}{n} \rho_{-}^{n\pi/\beta} \left[\rho_{+}^{-n\pi/\beta} - \left(\frac{\rho_{+}}{a^{2}}\right)^{n\pi/\beta} \right] \sin(n\pi\varphi/\beta) \sin(n\pi\varphi'/\beta) ,$$

where ρ and φ are the two-dimensional polar coordinates, and $\rho_{-} = \operatorname{Min}(\rho, \rho'), \rho_{+} = \operatorname{Max}(\rho, \rho').$

Problem 2. A flat conducting ring of infinitesimal thickness, internal radius a, and external radius b is uniformly charged with total charge Q.

- (a) Write the three-dimensional charge distribution density in cylindrical coordinates;
- (b) Find the potential outside the ring.

Problem 3. Jackson problem 3.7.