PHYS 621 - HOMEWORK \# 5-DUE FRIDAY, 10/02/2009

Problem 1. A sphere of radius a has charge uniformly distributed over its surface with charge density $Q /\left(4 \pi a^{2}\right)$, except for a spherical cap at the north pole defined by the cone $\theta=\alpha$, which is kept at zero potential. Show that the potential outside the sphere is:

$$
\phi=\frac{Q}{8 \pi \epsilon_{0} a} \sum_{l=0}^{\infty} \frac{P_{l+1}(\cos \alpha)-P_{l-1}(\cos \alpha)}{2 l+1}\left(\frac{a}{r}\right)^{l+1} P_{l}(\cos \theta),
$$

where $P_{-1}(\cos \alpha)$ is defined to be equal to -1 . Discuss the limiting form of the potential as the spherical cap becomes very small or very large.
[Hint: You might find useful the following relation: $(2 l+1) P_{l}(x)=P_{l+1}^{\prime}(x)-P_{l-1}^{\prime}(x)$.]

Problem 2. A thin flat conducting disc of radius a is maintained at constant potential V. If the surface charge density is proportional to $1 / \sqrt{a^{2}-d^{2}}$, where d is the distance from the center of the disc:
a) Show that the potential for $r>a$ is:

$$
\phi=\frac{2 V a}{\pi r} \sum_{l=0}^{\infty} \frac{(-1)^{l}}{2 l+1}\left(\frac{a}{r}\right)^{2 l} P_{2 l}(\cos \theta)
$$

b) Find the potential for $r<a$;
c) Find the capacitance of the disc.

Problem 3. Consider two concentric spheres of radius a and b, held at constant potential V_{a} and V_{b}, respectively.
a) Using an expansion in Legendre polynomials, show that the potential between the two spheres is

$$
\phi=A+\frac{B}{r},
$$

where

$$
A=\frac{V_{b} / a-V_{a} / b}{1 / a-1 / b} \quad \text { and } \quad B=\frac{V_{a}-V_{b}}{1 / a-1 / b}
$$

b) Check the previous result using the Green's function of two concentric spheres

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi)}{(2 l+1)\left[1-\left(\frac{a}{b}\right)^{2 l+1}\right]}\left(r_{-}^{l}-\frac{a^{2 l+1}}{r_{-}^{l+1}}\right)\left(\frac{1}{r_{+}^{l+1}}-\frac{r_{+}^{l}}{b^{2 l+1}}\right) .
$$

