
PHYS 621 – HOMEWORK # 5 – DUE FRIDAY, 10/02/2009

Problem 1. A sphere of radius a has charge uniformly distributed over its surface
with charge density Q/(4πa2), except for a spherical cap at the north pole defined by
the cone θ = α, which is kept at zero potential. Show that the potential outside the
sphere is:
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where P−1(cos α) is defined to be equal to −1. Discuss the limiting form of the
potential as the spherical cap becomes very small or very large.

[Hint: You might find useful the following relation: (2l+1)Pl(x) = P ′
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(x).]

Problem 2. A thin flat conducting disc of radius a is maintained at constant potential
V . If the surface charge density is proportional to 1/

√

a2
− d2, where d is the distance

from the center of the disc:

a) Show that the potential for r > a is:
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b) Find the potential for r < a;

c) Find the capacitance of the disc.

Problem 3. Consider two concentric spheres of radius a and b, held at constant
potential Va and Vb, respectively.

a) Using an expansion in Legendre polynomials, show that the potential between
the two spheres is

φ = A +
B

r
,

where
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.

b) Check the previous result using the Green’s function of two concentric spheres
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