PHYS 621 - HOMEWORK \# 2 - DUE WEDNESDAY, 9/9/2009

Problem 1. The Green's function in two dimensions is defined by the equation:

$$
\nabla^{2} G\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=-2 \pi \delta^{2}\left(\mathrm{x}-\mathbf{x}^{\prime}\right),
$$

where ∇^{2} is the Laplacian in two dimensions.
a) Find the Green's function $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.
b) Using the Green's function found in a), write the solution of the Poisson equation $\nabla^{2} \phi=-\rho(\mathbf{x}) / \varepsilon_{0}$ in two dimensions with no boundary conditions.

Useful formula:

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} .
$$

Problem 2. Show by derivation (not by substitution!) that the Green's function for the one-dimensional operator

$$
L=-\left(\frac{d^{2}}{d x^{2}}+k^{2}\right), \quad L G\left(x, x^{\prime}\right)=-\delta\left(x-x^{\prime}\right)
$$

with boundary conditions $G\left(0, x^{\prime}\right)=(d G / d x)\left(1, x^{\prime}\right)=0$ is

$$
G\left(x, x^{\prime}\right)=-\frac{\sin (k x) \cos \left[k\left(1-x^{\prime}\right)\right]}{k \cos k} \theta\left(x^{\prime}-x\right)-\frac{\cos [k(1-x)] \sin \left(k x^{\prime}\right)}{k \cos k} \theta\left(x-x^{\prime}\right) .
$$

Problem 3. Show that for a region \mathcal{V} bounded by conductors (not necessarily grounded) the following relation holds:

$$
\int_{\mathcal{V}}\left[\rho_{1} \phi_{2}-\rho_{2} \phi_{1}\right] d V=\sum_{n}\left[Q_{2} V_{1}-Q_{1} V_{2}\right]_{n}
$$

where Q and V represent the net charge and voltage on each conductor, the sum is over all conductors and the subscripts 1 and 2 refer to two different cases of charge distribution and resulting potential with the same geometry for the conductors. Use the above result to prove that the potential of a neutral conducting sphere of radius a due to a point charge at distance $d>a$ is $V=q / 4 \pi \epsilon_{0} d$. [Hint: Use the stated situation as case 1 and a suitable different "easy-to-solve" configuration as case 2.]

