## PHYS 621 - HOMEWORK \# 1 - DUE WEDNESDAY, 9/02/2009

Problem 1. Using the definition of the Dirac $\delta$ function, prove the following properties:

1) $\delta(a x)=\delta(x) /|a|$
2) $x \delta(x)=0$
3) $x^{n} \delta^{(n)}(x)=(-1)^{n} n!\delta(x)$, where $\delta^{(n)}(x)$ is the n -th derivative of the Dirac $\delta$ distribution.
4) $\delta[y(x)]=\sum_{i} \delta\left(x-x_{i}\right)|d y / d x|_{x=x_{i}}^{-1}$, where $x_{i}$ are the simple zeros of the function $y(x)$.

Problem 2. Show that the one-dimensional integral representation of the Dirac $\delta$ function

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d k e^{i k x}
$$

can be written as the distribution $\lim _{n \rightarrow \infty} n G(n x)$, where (1) $G(x)=e^{-\pi x^{2}}$ and (2) $G(x)=\sin ^{2}(x) /\left(\pi x^{2}\right)$.

Problem 3. Using Dirac delta functions in the appropriate coordinates, express the following charge distributions as three-dimensional charge densities $\rho(\mathbf{x})$.
a) In spherical coordinates, a charge $Q$ uniformly distributed over a spherical shell of radius $R$.
b) In cylindrical coordinates, a charge $\lambda$ per unit length uniformly distributed over a cylindrical surface of radius $R$.
c) In cylindrical coordinates, a charge $Q$ uniformly distributed over a flat annulus of negligible thickness and radii $R_{1}$ and $R_{2}>R_{1}$.
d) In Cartesian coordinates, a charge per unit length $\lambda$ uniformly distributed on a square loop of wire with negligible radius and side $L$.

