PHYS 621 - HOMEWORK \# 10 - DUE FRIDAY, 11/13/2009

Problem 1. Show that the magnetic field B on the axis of a circular solenoid of length L and radius a, carrying a right-handed current I, is

$$
B_{z}=\frac{\mu_{0} n I}{2}\left(\frac{1}{\sqrt{1+(a / x)^{2}}}+\frac{1}{\sqrt{1+[a /(L-x)]^{2}}}\right)
$$

where x is the distance on the axis from the bottom of the solenoid (entry point of the current), and $n \gg 1$ is the number of turns per unith length.

Problem 2. A spherical conducting shell of radius a and surface charge σ rotates with constant angular velocity $\bar{\omega}=(0,0, \omega)$. Compute the magnetic field B inside and outside the spherical shell.

Problem 3. Jackson problem 5.15 parts (a) and (b).

