PHYS 621 - LEGENDRE FUNCTIONS & SPHERICAL HARMONICS

LEGENDRE FUNCTIONS

Differential equation
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Solution in the region |z| < 1:
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is called Legendre function of the first kind. It is also represented as
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Note the property:

PE(z) = P*,_,(2).
For p = 0:
P,(2) = PY(2) = F(—v,v+1;1;(1 - 2)/2).

are the Legendre functions, which reduce to the Legendre polynomials for v = [ (integer).
They satisfy the differential equation

(1—23P)(2) —22P.(2) +v(v+1)P,(2) =0,

If 4 # m (integer), P} (z) and P, #(z) are independent. Instead of P, #(z) it is customary

to introduce: , ( )
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(Legendre function of the second kind.)

If 4 = m (integer) PJ*(z) and P, ™(z) are proportional:
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Relation between P!*(z) and the Legendre functions P, (z):
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ASSOCIATED LEGENDRE FUNCTIONS

If v = [ (integer) the associated Legendre functions are regular in —1 < x < 1. They are
defined as:

dm
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Note the extra (—1)3"/2 factor (conventions). Sometimes a normalization without (—1)™

is also used.

Rodrigues’ formula for the associated Legendre Polynomials:
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Relation to m < 0:

Normalization:

This implies:
Im| <, or -1 <m<l.



SPHERICAL HARMONICS

Differential equation:
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The regular solution in —1 < cosf < 1 with boundary condition
Y(0,0) =Y (0,0 +2m)

is
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Normalization:
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Symmetry property:
Yiom(©) = (1), (2)

Completeness:
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Addition theorem:

where
cosy = cos B’ cosf + sinf’ sin 6 cos(¢p — ¢') .



